
34 The Delphi Magazine Issue 36

Hunting High
And Low
Searching for patterns in ASCII text

A
lg

or
it

h
m

s

A
lfresco

by Julian Bucknall

One of the subjects our Editor,
Chris Frizelle, and I have been

batting around for a while as a
topic for Algorithms Alfresco is
processing text. When I say ‘ba-
tting around’, Chris would propose
it as a topic and I’d laugh, and say
something along the lines of ‘Give
me a 500-page book and a 5-figure
advance and I’ll think about it’ and
toss it back, and he’d appeal to my
vanity, ‘Only you could do the sub-
ject justice for our Delphi reader-
ship’ and I recognize it as a
not-so-subtle ploy to preen my
pride, but I shall give in anyway...

Nevertheless, processing text is
a huge subject, so, in the absence
of a 5-figure advance (not even in
yen, note!) I’ll take the easy way out
and use several articles to explore
the topic. Also, I think it’ll turn out
to be a series of occasional articles,
rather than a block of N successive
ones, so remember to keep your
subscription up to date.

Train Of Thought
What do I mean by processing text?
First, let’s define text. At a very
basic level, text is a bunch of char-
acters. For the present, I’ll just talk
about single byte character set text
(SBCS), rather than text that uses
double byte character sets (DBCS)
or UNICODE. The text will appear
to be a series of words in lines (or
paragraphs), delimited by carriage
return and linefeed character pairs
(or some other sequence, for
example single linefeed charac-
ters). We’ll be looking at text that is

available either in a memory block
or in a file.

Having defined it, we can think
about what we shall want to do
with text. I suggest the following
(non-exhaustive) list: search for
strings or patterns in the text,
replace strings in the text with
others, edit text (or rather investi-
gate data structures for doing so),
look at the buffering of large text
files and check out methods for
indexing text in files or database
memo BLOBs.

Having laid some bare founda-
tions, let’s move onto our first
topic, the subject of this article:
searching for strings in text. The
string we search for is known as
the ‘pattern’, so this article will
describe a couple of algorithms for
searching for patterns in text. We’ll
limit ourselves to patterns of
simple characters instead of
metacharacters, as in regular
expressions, so we’ll be searching
for phrases like ‘The tongues of
mocking wenches are as keen As is
the razor’s edge invisible’ in Shake-
speare’s Love’s Labour’s Lost.

I think that everyone is familiar
with the Pos function in the System
unit. The syntax for Pos is:

function Pos(SubStr : string;
S : string) : integer;

where SubStr is the pattern we are
looking for in the text S (to put it in
terms of this article). The result is 0
if the pattern is not found in the
text, or is the position of the first

CharsToCheck := length(S) - length(SubStr) + 1
for I := 1 to CharsToCheck do {loop 1}
if S[I] = SubStr(1) then
{loop 2}
Compare rest of chars in Subtr to S[I+1] onwards
if equal then
signal success and exit immediately

endforloop
signal failure

➤ Listing 1: pseudo-code for the Delphi Pos function.

character of the first occurrence of
the pattern if it is. Pos is written in
assembly for speed (and, in fact,
there are two versions in Delphi 2
and later: one for short strings and
one for long strings), and imple-
ments a simple search as
described by the pseudo-code in
Listing 1.

The Pos routine performs the
search in two loops. Firstly, it
searches for the initial character of
the pattern in the text (loop 1), and
secondly, for every match it finds,
it attempts to compare the pat-
tern’s characters to the text at the
match position (loop 2). Both the
scan for the initial character and
the comparison at a match are
done by fast assembler REPx SCASB
instructions. The only other opti-
mization is to recognize that you
don’t have to scan the whole of the
text for the initial character of the
pattern. For example, if the text
was 50 characters long and the pat-
tern was 49 characters, you’d only
have to scan for the initial charac-
ter of the pattern in the first two
positions of the text, since you
couldn’t get a 49 character string
from anywhere else in the text.

Pos is extremely good at what it
does. For a test, I used a complete
version of Love’s Labour’s Lost,
read it into a single memory block
(125.6Kb) and searched for the
words ‘keel’ (only appears at the
very end of the play), ‘keen’
(appears right at the start), and
‘keek’ (does not appear at all). I
timed the searches over enough
iterations to give a reasonably
accurate time. The times for 5000
searches were 27.9, 0.1 and 27.4
seconds respectively.

August 1998 The Delphi Magazine 35

At first glance this sounds pretty
good, but is there a catch? An obvi-
ous one to point out is that my test
was very favorable to Pos: the ini-
tial letter of my three words was k,
which I’m sure you’ll agree is not
that common a letter in English
text. What happens is that the
search for the initial letter k would
not be interrupted all that often. In
fact, the most common character
in Love’s Labour’s Lost is the space,
so I repeated the test prefixing the
three words with a space. The
results were nearly twice as long:
53.1, 0.3, 53.2 seconds respec-
tively: interrupting the scan for the
initial letter costs time.

One big drawback with Pos is
that it’s only good for a case-
sensitive search: the pattern has to
exist exactly in the text, we can’t
search for ‘keel’ and expect to get
‘Keel’, for example. Obviously, we
could uppercase both the pattern
and the text and then do the
search, but sometimes the text can
be pretty long. Another problem is
that it only finds the first
occurrence of the pattern in the

text: if you want to find the second
or subsequent one, you’re out of
luck, time to recode it or to fiddle
around with the text string.

Stay On These Roads
So what, if anything, can we do to
improve the time that Pos takes?
I’m afraid, not a lot. It’s written in
assembly language, following a
simple algorithm, so I’d have to say
we need to look further afield. The
first stop on our journey is the
Boyer-Moore algorithm.

One of the problems with Pos is
what happens if we almost match
the pattern, but don’t quite
manage. Suppose we are looking
for the word ‘twenty-two’ in the
phrase ‘twenty and two is twenty-
two’. Following the pseudo-code
for the Pos routine, we first scan for
the initial t of the pattern. We hit it
straight away in the text. We try
and match the rest of the pattern.
We match six characters in the pat-
tern (t, w, e, n, t, y) before failing on
the space (space does not equal
hyphen). We then go back and scan
for the initial t again, but we start

this time from the w, the second
letter of the text. We could have
started from the letter after the
space instead, since there are no
spaces in the pattern. If only we’d
prepared some ‘information’
about the pattern we could have
been more intelligent about where
to start the scan again for the first
letter.

This analysis of the pattern is
the basis for the Boyer-Moore algo-
rithm. We generate a list of ‘skip’
values for each letter of our char-
acter set and then use these to skip
over large tracts of the text. The
other oddity is that we scan for the
last character of the pattern, not
the first. Otherwise, the Boyer-
Moore method still follows the
dual loop method: scan for a char-
acter for the first loop, and match
the pattern for the second loop.
The match loop proceeds in
reverse, of course.

It turns out that there are two
types of skip we could do. The first
is the easiest to understand. Sup-
pose we were looking for ‘rat’ in
‘cats chase rats’. Assuming that we

36 The Delphi Magazine Issue 36

are using the Boyer-Moore method
(I know, I know, I haven’t actually
told you how it works yet, but bear
with me for a little while longer),
we are scanning for the final t of the
pattern. Suppose we’ve scanned to
the s in the word cats. It doesn’t
match (duh!), however we can say
something very definite: the char-
acter s does not appear in the pat-
tern. Therefore, we can skip over 3
characters of the text (the length of
the pattern) before resuming our
scan for the last character. Why?
There is no s in the pattern, any-
where, so, if the pattern is to
appear in the text, the first place it
can appear is after the s, hence we
skip 3 characters. Wham! We’re
really cooking with gas: instead of
skipping one character at a time in
the scan phase as with Pos, we
jump over chunks of the text in
leaps and bounds. If our pattern
string was fairly long, we’d be
moving at warp speed through the
text.

Before we get too enthusiastic,
the preceding argument only
applies to characters that don’t
appear in the pattern. What if, in
our scan for the last character of
the pattern, we hit an r in the text,
say. The letter r does appear in our
pattern. Can we skip more than one
character, this time? The answer is
yes. What we need to do is to line
up the rightmost r of our pattern
(ie, the r in rat) with the r we hit in
the text, and then continue the
scan for the last character. In
effect, we skip two characters
instead of the one.

I think you can see what the ini-
tial analysis of the pattern entails.
It involves the calculation of the

skip values for every single charac-
ter. The majority of the skip values
will be equal to the length of the
pattern (basically for those charac-
ters that do not appear in the pat-
tern). For characters that can be
found in the pattern, the skip value
will be equal to its distance from
the last character (the smallest dis-
tance if it appears more than once
in the pattern).

So what happens if we do match
the last character in the pattern in
the scan phase? We’ll slip into the
match loop where we try and
match the entire pattern. If we do
manage this, then all well and
good, we’ve completed our search.
If we don’t, there will be some char-
acter in the text where we mis-
match.

One skip we can do is to pretend
that this mismatch occurred at the
scan for last character level and
advance the same number of char-
acters. In our example, suppose
we’d hit on the word cat in the text.
We can’t match it with our pattern,
since the c in the text does not
equal the r in the pattern. So we
advance the pattern past the c
(since there is no c in the pattern)
and then continue searching for
the last character. This does not
mean taking our previous scanned
position and adding three, the
length of the pattern. Suppose
we’d scanned for the terminating t
and matched the t in the word cat
at a text position of X. We then try
and match our pattern: it’s a no go
with the c at position X-2. We then
skip 3 characters from where we
failed to match, which is X+1, and
continue the scan for the last char-
acter at that point.

And You Tell Me
Let’s be more concrete and see
how the entire process works
when we search for the pattern
‘rat’ in the text ‘cats chase rats’.
The skip values for r, a, t, are 2, 1, 3
respectively. All other characters
have skip values of 3. We start as
follows:

Text: cats chase rats
Position ^
Pattern: rat

We have a match on the t, and on
the a, but we mismatch on the r in
the pattern with the c in the text.
We skip by 3 characters (the skip
value for c) from the point of the
mismatch.

Text: cats chase rats
Position ^
Pattern: rat

No luck: the t does not match the s,
and as s is not in the pattern we
advance by 3.

Text: cats chase rats
Position ^
Pattern: rat

No match again, and as h is not in
the pattern we advance by 3.

Text: cats chase rats
Position ^
Pattern: rat

No match again, and as e is not in
the pattern we advance by 3.

Text: cats chase rats
Position ^
Pattern: rat

Again no match, however a is in the
pattern and has a skip value of 1.

Text: cats chase rats
Position ^
Pattern: rat

Bingo, we now match the pattern
all the way.

Touchy!
However, before we congratulate
ourselves, there is a big problem
with this approach. Suppose we

type
PBoyerMooreSkips = ^TBoyerMooreSkips;
TBoyerMooreSkips = array [char] of byte;

procedure GenerateSkips(aPattern : string; var S : TBoyerMooreSkips);
var
i : integer;
LenPat : integer;
Skip : integer;

begin
{assumption: 0 < length(aPattern) <= 255}
LenPat := length(aPattern);
FillChar(S, sizeof(S), byte(LenPat));
Skip := pred(LenPat);
for i := 1 to pred(LenPat) do begin
S[aPattern[i]] := Skip;
dec(Skip);

end;
end;

➤ Listing 2: Generate skip values for Boyer-Moore search.

August 1998 The Delphi Magazine 37

are searching for ‘ballon’ in a large
amount of text which contained
the sentence ‘The French word for
balloon is ballon.’ We’d be
scanning for the last n in our pat-
tern, and let’s say we match it with
the final n in balloon (at position X,
say).

Text: ..word for balloon is..

Position ^

Pattern: ballon

The o in ballon matches the final o
in balloon as well. However, there’s
a mismatch on the first o at X-2: it
doesn’t match with the final l in
ballon. If we apply the trick we just
used we find we have a problem:
the letter o says to skip one charac-
ter. If we do this, we find that we’ll
start the scan for the last character
at X-1 as the very next step.

Text: ..word for balloon is..

Position ^

Pattern: ballon

It won’t match, so we’ll skip one
character to position X (the o char-
acter in the text we tried to match
says, skip one), and we’re back
where we started from. In other
words, an infinite loop.

I don’t know about you, but infi-
nite loops are a no-no for me. So,
we need to revise the algorithm a
little bit for this case.

The easiest thing to do is calcu-
late the two new positions, one
from the last mismatch position, as
above, and the other as if we hadn’t
matched on the last character. We

function BMPos(aPattern : string; aText : string) : integer;
var
TextInx, TextInx2 : integer;
PatInx : integer;
PatLen, TextLen : integer;
SkipValue, SkipValue2 : integer;
Skips : TBoyerMooreSkips;
LastChar : char;
Matched : boolean;

begin
{quick easy checks}
PatLen := length(aPattern);
TextLen := length(aText);
if (aPattern = '') or (PatLen > TextLen) then begin
Result := 0;
Exit;

end;
if (PatLen > 255) then
raise Exception.Create('Pattern is too long');

{generate the skip values}
GenerateSkips(aPattern, Skips);
{start looking for the last character of the pattern}
LastChar := aPattern[PatLen];
TextInx := PatLen;
while TextInx <= TextLen do begin
{calc skip value, based on current text character}
SkipValue := Skips[aText[TextInx]];

{if we don't have a match on the last character, skip}
if (LastChar <> aText[TextInx]) then
inc(TextInx, SkipValue)

{if we do have a match on the last char,
try matching the rest}
else begin
Matched := true;
Result := TextInx;
for PatInx := pred(PatLen) downto 1 do begin
dec(Result);
if (aPattern[PatInx] <> aText[Result]) then begin
NewTextInx := Result + Skips[aText[Result]];
inc(TextInx, SkipValue);
if (TextInx < NewTextInx) then
TextInx := NewTextInx;

Matched := false;
Break;

end;
end;
if Matched then
Exit;

end;
end;
Result := 0;

end;

➤ Listing 3: The Boyer-Moore pattern matching routine, BMPos.

then use the maximum
of these two values to
continue our search for
the last character. In the
ballon/balloon case that
means the maximum of
X-1 (which we’ve
already calculated) or
X+6 (obtained by assum-
ing that the n characters
didn’t match: the skip
value for n is 6). So we’d
jump six positions, and
resume the scan for the
last character.

The Living Daylights
After all this theorizing, time for
some concrete code. First we need
to calculate the skip values for
each character in the pattern. We’ll
use an array of byte, one element
for each possible ASCII character.
Notice that this limits us to maxi-
mum skip values of 255, so the pat-
tern must be 255 characters or less
in size (we could use an array of
integer instead, but would require
4 times as much space in 32-bit
land). We initialize all elements to
the length of the pattern (ie, we
assume that all characters have
the maximum skip value), and then
we calculate the skip values for
each of the characters in the pat-
tern, by calculating the distance, in
characters, to the final character of
the pattern. The code in Listing 2
will do perfectly well.

Notice that the code makes the
assumption that the length of the

Pattern Pos time BMPos time

‘keel’ 27.9 25.0

‘keep’ 0.1 0.2

‘keek’ 27.4 24.0

‘ keel’ 53.1 21.4

‘ keep’ 0.3 0.1

‘ keek’ 53.2 20.3

➤ Table 1: Comparison between Pos and
BMPos for various patterns.

pattern string must be between 1
and 255 inclusive. We could put in
some kind of check here, but we’ll
do so elsewhere.

Next is the actual Boyer-Moore
search. To reiterate: we need two
loops in this code, one to scan for
the final character, the other the
scan for an actual match with the
rest of the pattern once we have a
match on the last character. The
algorithm goes as follows. Scan
through the text for the last char-
acter in the pattern. Every time we
have a mismatch, calculate the
skip value and skip that number of
characters. If we match the last
character at some point, compare
the rest of the pattern. If we match,
hooray, it’s all over; if we don’t
match, calculate the maximum
skip we can make and proceed
scanning for the last character.
The full routine is in Listing 3.

We’ll do the same thing as we’ve
just done: search for the same six
patterns we used in the Pos case

38 The Delphi Magazine Issue 36

within the complete text for Love’s
Labour’s Lost. Before I present the
answer, I’d just like to say that at
this point I didn’t have much hope
that the Pascal version of Boyer-
Moore would be faster. After all, I
was comparing a hand-optimized
assembly routine with compiled
Pascal, and I was looking forward
no end (yeah, right) to converting
the Boyer-Moore routine to assem-
bly to prove my point. I needn’t
have worried: Even my compiled
Pascal Boyer-Moore routine was
faster than Pos in my test, except
for one small case. Table 1 shows
the results of Pos versus BMPos for
the six patterns.

The one case where Pos was
faster than BMPos could be due to
the fact that the margin for error in
such a small measurement is so
large, but I think, more likely, it’s
due to the fact that BMPos requires a
table of skip lists to be generated
and this takes time. Note also that
the latter three patterns are longer
and that they take a smaller length
of time with the Boyer-Moore rou-
tine. In general, this is the case: the
Boyer-Moore algorithm works
better with longer patterns
because of the larger skip values.
Just to prove this point, I searched
for ‘tongues of mocking wenches’
5000 times with both Pos and BMPos,
and Pos took over 4 times longer to
find it (the line is about three quar-
ters of the way through the play,
and is spoken by Boyet, a part I
played about 4 years ago).

Hurry Home
As I mentioned earlier, one of the
drawbacks with the stock Pos rou-
tine is that it doesn’t work with
case-insensitive searches. Of
course we could write one that did,
but writing it in Pascal would be
too slow, and we’d be left with
trying to shoehorn the case insen-
sitivity testing into the assembly
code. For the Boyer-Moore routine
I’ve presented, a case-insensitive
version could easily be written.
Firstly, the pattern string could be
converted to an uppercase version
in a local variable before starting
the scan and matching processes.
Next, every character the routine
looked at in the text would have to

Errata
Well, it didn’t take long. Reader Charlie McKeegan used the code
from my ternary tree article in the June issue in an application of his
and found a bug. The bug was discovered in the Insert method of the
ternary tree class, the one where I tried to remove the recursion from
the standard algorithm. Charlie found that if you perform the
following set of operations:

Insert:
‘abcd’
Insert:
‘abde’
Delete:
‘abcd’
Insert:
‘abcd’

and then look for ‘abcd’, you wouldn’t find it in the tree. I do
apologize for this mistake, and present the new code on this month’s
diskette.

As a matter of fact, this bug is an exemplary lesson in not removing
recursion for the sake of it, as I pointed out in my July article on the
subject. If only I’d written the two articles the other way round!

As always, if you find bugs in my articles or code, you can contact
me at julianb@turbopower.com

be converted to uppercase. You
could do this from first principles
by calling a Windows API routine,
or you could create a table of
uppercased characters before
starting, and use that throughout:
a case of space versus speed again.
Because you will be skipping over
blocks of characters in the text,
you will be converting less charac-
ters in the text to uppercase than
when using Pos (which after all
requires pretty much all charac-
ters in the text to be so converted).
I’ve included a case-insensitive
version of the Boyer-Moore routine
in the code with this month’s disk-
ette.

As regards the other drawback I
mentioned with Pos, I’m sure you’ll
agree that changing BMPos to accept
a starting position from which to
begin the search is simplicity itself.
Pass the start position in a new
parameter (indeed, with Delphi 4
you can declare a default parame-
ter as well, and set it to 1), and at
the point where the original code
sets TextInx the first time, set it
equal to the maximum of PatLen
and the passed start position.
Using this enhanced Boyer-Moore
routine you can find the first occur-
rence of the pattern with the first

call (say it returns X) and then
search for the second by calling
the routine again, starting from
X+PatternLength.

So, in conclusion, we can see
that Boyer-Moore is a very good
alternative to the Pos routine in the
System unit. It works consistently
better if there’s a lot of text to
search and the pattern is several
characters long, so that the gen-
eration of the skip values can be
offset by the extra speed of the
search. It’s infinitely better if we
want to do things with our search
that the Pos function was never
designed to do (of course!).

Julian Bucknall is a programmer
by trade and ability, actor by incli-
nation. He finds that searching for
ah ha! moments doesn’t always
work; as Archimedes found, they
come by themselves in the bath.
The code that accompanies this
article is freeware and can be used
as-is in your own applications.
© Julian M Bucknall, 1998

	Train Of Thought
	Stay On These Roads
	And You Tell Me
	Touchy!
	The Living Daylights
	Hurry Home
	Errata

